Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Á¶Á÷À¯µµÀç»ý¼úÀ» À§ÇÑ Æú¸®ÇÇ·ÑÀÌ ÄÚÆÃµÈ Æú¸®Ä«ÇÁ·Î¶ôÅæ ³ª³ë¼¶À¯ÀÇ ¹°¸®È­ÇÐÀû Ư¼º°ú »ýüÀûÇÕ¼º

Physicochemical properties and biocompatibility of polypyrrole-coated polycaprolactone nanofibers for guided tissue regeneration

´ëÇÑÄ¡°úÀç·áÇÐȸÁö 2024³â 51±Ç 1È£ p.29 ~ 42
±ÇÅÃÇö, ½ÉÇüÁØ, È«¹ÎÈ£,
¼Ò¼Ó »ó¼¼Á¤º¸
±ÇÅÃÇö ( Kwon Taek-Hyun ) - 
½ÉÇüÁØ ( Shim Hyung-Joon ) - 
È«¹ÎÈ£ ( Hong Min-Ho ) - 

Abstract

Æú¸®Ä«ÇÁ·Î¶ôÅæ(polycaprolactone) ³ª³ë ¼¶À¯´Â »ýºÐÇؼº Àç·á·Î Á¶Á÷ Àç»ý ºÐ¾ß¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ´Ù. ÇÏÁö¸¸ ³·Àº Ä£¼ö¼º°ú Á¶Á÷À» Á÷Á¢ Àç»ý½ÃÅ°Áö ¸øÇÏ´Â ÇÑ°è°¡ ÀÖ´Ù. ÃÖ±Ù ¿¬±¸¿¡ µû¸£¸é Æú¸®ÇÇ·Ñ(polypyrrole)Àº Àü±â Àüµµ¼º°ú »ýü ÀûÇÕ¼ºÀ¸·Î Á¶Á÷ °øÇÐ ºÐ¾ß¿¡ ÀáÀç·ÂÀÌ ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ÇÑÆí Àü±â¹æ»ç ¹æ¹ýÀº ´ëºÎºÐÀÇ °íºÐÀÚ¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ°í, Á¶Á÷ Àç»ý¿¡ ÀûÇÕÇÑ ´Ù°ø¼º ±¸Á¶¸¦ ¿ëÀÌÇÏ°Ô Á¦Á¶ÇÒ ¼ö ÀÖ´Â ÀåÁ¡ÀÌ ÀÖ¾î Àü±â¹æ»ç¸¦ ÅëÇØ ³ª³ë ¼¶À¯Ã¼¸¦ Á¦ÀÛÇÏ¿´´Ù. º» ¿¬±¸ÀÇ ¸ñÀûÀº Á¶Á÷À¯µµÀç»ý¼úÀ» À§ÇÑ Æú¸®ÇÇ·ÑÀÌÄÚÆÃµÈ Æú¸®Ä«ÇÁ·Î¶ôÅæ ³ª³ë ¼¶À¯ÀÇ ¹°¸®È­ÇÐÀû ¼ºÁú°ú »ýüÀûÇÕ¼ºÀ» Æò°¡ÇÏ´Â °ÍÀÌ´Ù. À̸¦ À§ÇØ ³× °¡Áö Á¾·ù ³óµµ±ºÀÇ Æú¸®ÇÇ·ÑÀÌÄÚÆÃµÈ Æú¸®Ä«ÇÁ·Î¶ôÅæ ³ª³ë ¼¶À¯Ã¼¸¦ ÁغñÇÏ¿´´Ù. ³óµµ±ºÀº Æú¸®ÇÇ·ÑÀÇ Áú·®ºñ¿¡ µû¶ó ¸í¸íµÇ¾úÀ¸¸ç, Æú¸®ÇÇ·ÑÀÌ ÇÔÀ¯µÇÁö ¾ÊÀº ´ëÁ¶±ºÀÎ Pure PCL°ú °¢°¢ 20 wt%, 30 wt%, 40 wt%ÀÇ Æú¸®ÇÇ·ÑÀÌ ÇÔÀ¯µÈ 20PPy, 30PPy, 40PPy¸¦ ½ÇÇ豺À¸·Î ±¸¼ºÇÏ¿´´Ù. Æú¸®Ä«ÇÁ·Î¶ôÅæ°ú ÇÇ·Ñ ´Ü·®Ã¼ È¥ÇÕ ¿ë¾×À» Àü±â¹æ»çÇÏ°í, ÀÌÈÄ ÇÇ·Ñ ´Ü·®Ã¼°¡ Æ÷ÇÔµÈ »êÈ­Á¦·Î¼­ÀÇ ¿°È­Ã¶(III) (FeCl3) ¿ë¾×¿¡ ħÀüÇÏ¿© ÁßÇÕÇÏ¿´´Ù.
±â°èÀû Ư¼ºÀ» È®ÀÎÇϱâ À§ÇÏ¿© ÀÎÀå½ÃÇèÀ» ÁøÇàÇÏ¿´°í, Á¢ÃË°¢ ÃøÁ¤À» ÅëÇØ Ç¥¸é Ä£¼ö¼ºÀ» È®ÀÎÇÏ¿´´Ù. ÀúÇ×°ª ÃøÁ¤À» ÅëÇÏ¿© Àü±â Àüµµ¼ºµµ È®ÀÎÇÏ¿´À¸¸ç, »ýüÀûÇÕ¼ºÀ» È®ÀÎÇϱâ À§ÇØ ¼¶À¯¾Æ ¼¼Æ÷(L929)¿Í ÀüÁ¶°ñ ¼¼Æ÷(MC3T3-E1)¸¦ ÀÌ¿ëÇÏ¿© ¼¼Æ÷µ¶¼ºÆò°¡¸¦ ÁøÇàÇÏ¿´´Ù. °á°ú°ªÀº one-way ANOVA (p -value = 0.05 ±âÁØ)·Î Æò°¡ÇÏ¿´°í, »çÈÄ ºÐ¼®Àº Tukey¡¯s post-hoc ½ÃÇè¹ýÀ» ÀÌ¿ëÇÏ¿´´Ù. Æú¸®ÇÇ·ÑÀÌ ÄÚÆÃµÈ Æú¸®Ä«ÇÁ·Î¶ôÅæ ³ª³ë ¼¶À¯Ã¼´Â ÄÚÆõÇÁö ¾ÊÀº Æú¸®Ä«ÇÁ·Î¶ôÅæ ³ª³ë ¼¶À¯Ã¼¿¡ ´ëºñÇÏ¿© ±â°èÀû °­µµÀÇ Åë°èÀûÀ¸·Î À¯ÀǹÌÇÑ°¨¼Ò´Â ¾ø¾ú´ø ¹Ý¸é ¸ðµç ³óµµ¿¡¼­ Àü±â Àüµµ¼ºÀÌ À¯ÀǹÌÇÏ°Ô Áõ°¡Çß´Ù. 30 wt% ÀÌ»óÀÇ Æú¸®ÇÇ·ÑÀÌ ÄÚÆõǾúÀ» ¶§, ÄÚÆõÇÁö ¾ÊÀº Æú¸®Ä«ÇÁ·Î¶ôÅæ ³ª³ë ¼¶À¯Ã¼ ´ëºñ Ä£¼ö¼ºÀÌ À¯ÀǹÌÇÏ°Ô Áõ°¡ÇßÀ¸¸ç, Æú¸®ÇÇ·ÑÀÇ ³óµµ¿Í °ü°è¾øÀÌ ¸ðµç ±º¿¡¼­ ¼¼Æ÷µ¶¼ºÀ» º¸ÀÌÁö ¾Ê¾Ò´Ù.
ÀÌ¿¡ Æú¸®ÇÇ·ÑÀÌ ÄÚÆÃµÈ Æú¸®Ä«ÇÁ·Î¶ôÅæ ³ª³ë ¼¶À¯Ã¼´Â ¹°¼º ¹× ¼¼Æ÷µ¶¼ºÀÇ °¨¼Ò ¾øÀÌ Çâ»óµÈ Ä£¼ö¼º°ú Àü±â Àüµµ¼ºÀ» ÅëÇØ, Á¶Á÷À¯µµÀç»ý¼úÀ» À§ÇÑ Àç·á·Î Àû¿ëÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëÇÑ´Ù.

Polycaprolactone (PCL) nanofibers are widely used in the field of tissue regeneration as a biodegradable material.
However, there is a limitation in that low hydrophilicity and tissue cannot be directly regenerated. Recent studies have shown that polypyrrole (PPy) has potential in the field of tissue engineering due to its electrical conductivity and biocompatibility. Meanwhile, the electrospinning has the advantage of using most polymers and of facilitating a porous structure suitable for tissue regeneration, so the nanofibers were fabricated through electrospinning. The purpose of this study is to evaluate the physicochemical properties and biocompatibility of PCL nanofibers coated with PPy for guided tissue regeneration. To this end, PCL nanofibers coated with four types of concentration groups were prepared. The group was named according to the concentration ratio of PPy, and the control pure PCL containing no PPy and 20PPy, 30PPy, and 40PPy containing 20 wt%, 30 wt%, and 40 wt%, respectively, consisted of the experimental group. The mixed solution of PCL and pyrrole monomer was electrospun. Then precipitate in an iron (III) chloride (FeCl3) solution as an oxidizing agent which contains pyrrole monomer and polymerized. A tensile test was performed to confirm mechanical properties, and surface hydrophilicity was confirmed through measurement of contact angle.
Electrical conductivity was also confirmed through measurement of resistance values. Lastly, cytotoxicity evaluation was performed using fibroblast (L929) and preosteoblast (MC3T3-E1) cell lines to confirm biocompatibility. The results were evaluated as one-way ANOVA (p -value = 0.05), and post-analysis was performed using Tukey¡¯s post-hoc test. PPy- coated PCL nanofibers showed no statistically significant decrease in mechanical strength compared to PPy-uncoated PCL nanofibers, while electrical conductivity increased significantly at all concentrations. When 30wt% or more of PPy was coated, hydrophilicity was significantly increased compared to the PPy-uncoated PCL nanofibers. Regardless of the concentration of PPy, cytotoxicity was not shown in all groups. Accordingly, it is expected that the PPy-coated PCL fibers may be applied as a material for guided tissue regeneration. This is because of improved hydrophilicity and electrical conductivity without deteriorated physical properties and cytotoxicity.

Å°¿öµå

Ä¡°úÀç·á; Á¶Á÷À¯µµÀç»ý¼ú; Àü±â¹æ»ç; Æú¸®ÇÇ·Ñ; Àüµµ¼º ÁöÁöü
Dental materials; Guided tissue regeneration; Electrospinning; Polypyrrole; Conductive scaffold

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸